Bringing Wetlands to Market: Examining the Role of Nitrogen in Blue Carbon

Katelyn Szura¹, University of Rhode Island, MS Graduate Student

Co authors: Serena Moseman-Valtierra¹, Meagan Eagle Gonneea², Jianwu Tang³

¹Department of Biological Sciences, University of Rhode Island

²Coastal and Marine Science Center, U.S. Geological Survey

³ The Ecosystems Center, Marine Biological Laboratory

Bringing Wetlands to Market: Examining the Role of Nitrogen in Blue Carbon

- I. Blue Carbon
- II. Bringing Wetlands to Market
- III. Role of Nitrogen

What is "blue carbon"?

Blue carbon is carbon (C) sequestered and stored in coastal ecosystems such as seagrasses, salt marshes, and mangroves. Carbon is sequestered through uptake of CO₂ during photosynthesis, then stored in leaves, roots, and sediments. Can be stored for millennia.

Total Global C Burial

Temperate Forests:

53 Tg C year⁻¹

Tropical Forests:

78.5 Tg C year⁻¹

Salt Marshes:

5-87 Tg C year⁻¹

(McLeod et al. 2011)

Blue Carbon and Climate Change

- Low oxygen in wet soils slows down decomposition
- Provides benefit of retention and removal of carbon from the atmosphere that has global warming potential

^{*}tCO2eq/ha is tons of carbon dioxide per hectare

Source: Murray et al., 2011

Why is blue carbon important? -Greenhouse Gas Concentrations are Increasing in the Atmosphere-

Source: Karl, 2009

Why do CH₄ and N₂O matter?

Global Warming Potential (GWP)

	Lifetime (years)	GWP (Cumulative forcing over 100 years)
Carbon Dioxide (CO ₂)	0	1
Methane (CH ₄)	12.4	28
Nitrous oxide (N ₂ O)	121.0	265

^{*}CO₂ is unable to be given a lifetime because its removal rate from the atmosphere is so variable

Source: IPCC,2014

What is the role of greenhouse gases in salt marshes?

Production of Nitrous Oxide in Salt Marshes via Soil Microbial Processes

1. Nitrification of ammonium (NH₄⁺)

2. Denitrification of nitrate (NO₃₋)

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

Bringing Wetlands to Market: Examining the Role of Nitrogen in Blue Carbon

- Blue Carbon
- II. Bringing Wetlands to Market
- III. Role of Nitrogen

How does a carbon market work and what are the benefits?

<u>Carbon market</u>: Individuals or companies purchase carbon credits to offset their emissions

The ability to purchase credits could provide an incentive to manage, protect, and restore, valuable coastal wetlands

Source: b-e-f.org

Carbon Markets: Financial Incentives

\$2.0 Billion

Market based payments for forest carbon since early 2000s

Bringing Wetlands to Market

Research & Monitoring

Education & Training Visit the Reserve Land & Facilities Waquoit Bay Reserve Foundation

Who: Led by Waquoit Bay National Estuarine Research Reserve and funded by NOAA National Estuarine Research

Reserve Science Collaborative

What: Collaborative project between team of scientists, policymakers, economists, and end users with aim to study

relationship between salt marshes, climate change, and nitrogen pollution

Where: Cape Cod, MA and Narragansett Bay, RI

When: Part I (2012-2015), Part II (2015-2018)

Why: To provide science and tools to help incentivize wetland restoration and protection through blue carbon

Bringing Wetlands to Market Overview

Innovative Science

GHG Budgets Nitrogen Influence Habitat relationships

Field Investigations & Lab Analyses

Predicting C Storage

How does GHG flux and carbon storage change under different env. conditions?

Develop User-Friendly Model

Carbon Markets & Financing

Address a main barrier for wetlands restoration & conservation

> Wetlands Carbon Offset Methodology

Economic Analysis

Is a Carbon Market Project Worth It?

How much are methane benefits worth?

COLLABORATION WITH END USERS

Bringing Wetlands to Market: Part I

Project Goals:

Number of

observations

 Develop methodology for tidal wetland and seagrass restoration

Photosynthetically

active radiation,

PAR

(micromole/m2/s)

- Develop user friendly model for predicting greenhouse gas fluxes and carbon sequestration
 - Quantify greenhouse gas fluxes across a marsh landscape and test for potential proxies of C fluxes

Soil salinity.

SS (ppt)

Soil

temperature,

ST (OC)

Input Variables

Net lateral

flux over

period

(g/m2)

the growing

0

Water depth

surface, WD

related to

marsh

(m)

Inputs: Soil temperature (ST), soil salinity (SS), water depth (WD), and light (PAR)

Bringing Wetlands to Market: Part II

Project Goals:

- Examine feasibility of creating carbon market using largest salt marsh restoration project in New England
- Broaden model: analyze how marsh stressors, such as nitrogen pollution, impact C sequestration

Climate Benefits From Salt Marshes: Opportunities for Methane Reductions via Restoration of Tidal Flows

Bringing Wetlands to Market: Part II

Herring River Restoration (HRR) Project

- Restore tidal flow, restoring flow to 1,000 acres of former salt marsh
- Generate greenhouse gas (GHG) benefits by reducing methane emissions and increasing carbon sequestration in restored marsh soil
- Feasibility study evaluates developing a carbon offset project to monetize GHG benefits from HRR project

Carbon Project Cycle

Objectives of Feasibility Study

Questions to answer:

- 1.What are the costs, benefits, risks, of developing a carbon project to help finance restoration of a blue carbon ecosystem?
- 2. What is the opportunity to help finance broader restoration of similar ecosystems across the region?

Carbon Project Feasibility

Courtesy of Scott Settelmyer, Terracarbon

What is the end goal of the feasibility study?

To provide better information to inform decisions about future carbon project development

Bringing Wetlands to Market: Examining the Role of Nitrogen in Blue Carbon

- I. Blue Carbon
- II. Bringing Wetlands to Market
- III. Role of Nitrogen

How Does Nitrogen Loading Impact Salt Marshes?

Mary's Creek, RI: 200 g N m⁻² y⁻¹

Source for N loads: Wigand et al. 2003

Short-term nitrate addition shifted salt marsh from N₂O sink to source

Plots received single pulses of nitrate (0.5L of 300 μ M)

(Moseman-Valtierra et al. 2011. Atmospheric Environment)

Greenhouse Gas Flux Measurements

- Fluxes taken in Spartina alterniflora, dominant marsh grass at RI sites
- Six replicates per site
- Measurements taken biweekly, alternating two analyzers

Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes

Elizabeth Q. Brannon, *1 Serena M. Moseman-Valtierra, 1 Chris W. Rella, 2 Rose M. Martin, 3 Xuechu Chen, 4,5 Jianwu Tanq 4

Picarro G2508 CO₂, CH₄

Los Gatos Research Analyzer, N₂O

Carbon Dioxide (CO₂) Fluxes by Month

Methane (CH₄) Fluxes by Month

Nitrous Oxide (N₂O) Fluxes by Month

RI Net GHG Fluxes

Gas	CO ₂ Equivalents m ⁻² d ⁻¹
CO ₂	-16,990
CH ₄	138
N ₂ O	57

How much CO₂ uptake is offset from N₂O and CH₄ emissions?

1%

^{*}Based on Average Flux Calculated for Each Gas Over Entire Course of Study

Conclusions

 Coastal wetlands are efficient C sinks with great potential for mitigating climate change

 Carbon markets are an innovative way to provide an economic incentive to manage, protect, and restore coastal wetlands

• Marshes have high capacity for receiving nitrogen, but not releasing large N₂O from *S. alterniflora* marshes

 Stressors, such as nitrogen, that have the potential to alter C sequestration need to be accounted for in carbon markets

Acknowledgements

Funding Source:

NOAA National Estuarine Research Reserve Science Collaborative USDA Hatch Grant

Partners:

Marine Biological Laboratory
USGS
West Virginia University
Restore America's Estuaries
Waquoit Bay NERR

West Virginia University.

Collaborators:

Kenny Raposa Beth Watson Katie Lynch Liz Brannon Ashley Hogan Ryan Quinn

