Through the River and Over the Woods – Global PFAS Exposure and Implications for Ecosystem Health

Lisa McIntosh, MS, DABT Woodard & Curran, Inc.

Soil and Water Conservation Society Southern New England Chapter March 30, 2023

What are PFAS?

Per- and Polyfluoroalkyl Substances

- Large class of man-made compounds
 - Very stable, carbon-fluorine bonds
 - High thermal, chemical stability
 - Water soluble
- Used as surfactants, water/stain repellents, etc.

Environmental focus on perfluoroalkyl group

- Nonpolymers
- $C_n F_{2n+1} R$
- Perfluoroalkyl carboxylic acids (PFCAs) PFOA
- Perfluoroalkyl sulfonic acids (PFSA) PFOS
- Long vs. short chain
- Some polyfluoroalkyl substances also important
 - Precursors to PFCAs
 - fluorotelomers

Persistent, Bioaccumulative, Toxic

PFOA: Perfluorooctanoic acid (C8)

PFOS: Perfluorooctane sulfonic acid

PFAS Sources/Uses

Fire-fighting foams (e.g., AFFF)

Consumer products

- Industrial use
 - Aerospace, metal plating, automotive, electronics, construction, etc.

Source: Riverside Public Utilities https://riversideca.gov/press/understanding-pfas

How do PFAS move through the environment?

PFAS in the air

Figure 6-1A. Observed PFAS concentrations in outdoor air.

Source: ITRC PFAS Technical and Regulatory Document https://pfas-1.itrcweb.org/6-media-specific-occurrence/#figure_6_1a

- Important transport system
 - Local and global
 - Gas, aerosol, particulates
 - Volatile precursors can be prevalent
- Removal via deposition
 - Dry particulates
 - Precipitation

Raining down

Woodard & Curran PFAS in Rain Study (unpublished data) % Detected

		Detected	Detected	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	6%	1.82	3.48	Fluorotelomer precursor
Short Perfluorobutanoic Acid (PFBA)	13%	2.3	3.36	
Perfluorohexanoic Acid (PFHxA)	2%	1.94	1.94	
Perfluorononanoic Acid (PFNA)	2%	2.86	2.86	
Perfluoropentanoic Acid (PFPeA)	6%	2.08	2.35	

Results in ng/l

Minimum

Maximum

PFAS on the ground

Appala Raju Badireddy, Ph.D. Assistant Professor Civil and Environmental Engineering University of Vermont Contact Email: <u>Raiubadireddy@uvm.edu</u>

MA ME NH VT

...and in the ground(water)

Source: Environmental Working Group https://www.ewg.org/interactive-maps/pfas_contamination/map/

...and waterways

- Direct inputs from atmosphere, wastewater, releases etc.
- Indirect input via groundwater, stormwater runoff
- Remote areas: pg/L to ng/L

PFAS transport through the food web

Source: EPA EcoBox: https://www.epa.gov/ecobox/epa-ecobox-tools-exposure-pathways-exposure-pathways-era

Bioconcentration: Uptake from water

Bioaccumulation: Uptake from all surrounding sources

Biomagnification: Increasing concentrations with increasing trophic levels

PFAS accumulate in biota

- Binds to proteins, phospholipids
- PFOS predominant
- Global exposure documented

Bioaccumulation is highly variable

The Big Question: does exposure translate into effect?

- Decades and multitude of laboratory data
- Mostly on PFOS and PFOA
- Mostly laboratory studies
- Toxicity is highly variable among organisms

Health effects in mammals

Information sourced from Agency for Toxic Substances and Disease Registry | Additional health effects have been reported and those highlighted demonstrate a range of potential effects.

Effects on non-mammals

- Studies mainly focus on survival, growth, and reproduction
 - ppb to ppm levels
 - immune, developmental
 - transgenerational

- Highly variable
- Moderation by TOC and other factors

What don't we know?

- Toxicity of most PFAS
- Toxicity in most species
- Toxicity of PFAS mixtures
- Modulation by environmental factors
- Population-level impacts

Ecological risk assessment of PFAS

- Stressors
- Migration pathways
- Exposure routes
- Exposure potential
- Toxicity
- Risk
- Uncertainty

PFAS ecological benchmarks for surface water

Ecological Screening Value	Concentration ug/L	
	PFOS	PFOA
USEPA NRWQC- chronic (draft)	8.4	94
Ecological Screening Value ¹	22.6	307

1. Grippo, M., Hayse, J., Hlohowskyj, I. and Picel, K. September 2021. Derivation of PFAS Ecological Screening Values. Argonne National Laboratory

- Many states promulgated or are in process of developing WQC
- USEPA proposed invertebrate/fish tissue-based NRWQC

PFAS ecological benchmarks for soil

Receptor	Ecological Screening Value (ug/kg) ¹			
	Plants	40,200	79,500	
Invertebrates	48,100	22,400		
Mammals	8.7	3,840		
Birds	38.6			

Grippo, M., Hayse, J., Hlohowskyj, I. and Picel, K. September 2021. Derivation of PFAS Ecological Screening Values. Argonne National Laboratory

Use multiple lines of evidence to assess risk

- Literature tox values
- Lab toxicity studies
- Bioaccumulation testing

Weight of Evidence is Critical

Understand limitations and uncertainties

Line of Evidence	Uncertainties
Benchmarks	Few currently available; not site-specific
Toxicity Testing	Which species is most sensitive?
Bioaccumulation Testing / Tissue Sampling	Standardized analytical methods lacking
Food Chain Models	How to best predict uptake?
Field Surveys	Chemical, physical and biological confounders

So what does all this mean?

- PFAS are prevalent in our environment.
 - Organisms are exposed to PFAS on a global scale.

- Exposure associated with adverse effects at environmental levels
 - Considerable uncertainty/variability

Have any good news?

PFAS is a priority

- Regulatory impetus
- Phase out of PFOS/PFOA
 - Human PFOS and PFOA serum levels have decreased

Push for:

- Research & Development
- Analysis
- Remediation

EPA's PFAS Action Plan, 2019:

"Ecological toxicity information is also needed by stakeholders to inform risk assessment and management to protect ecosystems, animals, and plant resources they support"

Figure 1. Geometric Mean Human Serum Concentrations (ng/mL) of Selected PFAAs (NHANES,2019)

PFAS resources

- USEPA PFAS Website: <u>https://www.epa.gov/pfas</u>
- Interstate Technology and Regulatory Council (ITRC): PFAS Technical and Regulatory Document: <u>https://pfas-1.itrcweb.org/</u>
- Argonne National Laboratories, Grippo, M., Hayse, J., Hlohowskyj, I. and Picel, K. September 2021. Derivation of PFAS Ecological Screening Values. <u>https://www.denix.osd.mil/dodepa/</u>
- National Groundwater Association
 - Groundwater and PFAS: State of Knowledge and Practice. <u>https://my.ngwa.org/NC_Product?id=a183800000kbKF9AAM</u>
- Vermont Soil Study: <u>https://anrweb.vt.gov/PubDocs/DEC/PFOA/Soil-Background/PFAS-Background-Vermont-Shallow-Soils-03-24-19.pdf</u>
- Maine Soil Study: <u>https://www.maine.gov/dep/spills/topics/pfas/Maine_Background_PFAS_Study_Report.pdf</u>
- New Hampshire Soil Study (data): <u>https://www.usgs.gov/data/statewide-survey-shallow-soil-concentrations-and-polyfluoroalkyl-substances-pfas-and-related</u>

Thank You!

Questions?

Lisa McIntosh Woodard & Curran Imcintosh@woodardcurran.com

