Compost: Characteristics and Uses
Southern New England Chapter of the Soil & Water Conservation Society
Friday August 5th, 2016
Bear Path Farm (Whately, MA)
and UMass Amherst
Geoff Kuter, Ph.D.
Agresource Inc.
www.Agresourceinc.com

What is Compost?
Compost is a soil amendment that:
• Provides organic matter
• Supplies nutrients
• Stimulates microbial activity
Compost added to soil changes:
• Soil physical properties
• Soil chemistry
• Microbial activity
The Benefits of Using Compost

Improve soil physical properties by adding Organic Matter

- Increase water holding capacity
- Improve physical structure
- Lower soil bulk density

- Reduce water use for irrigation
- Improve water infiltration into soil surface
- Reduce erosion

Add nutrients and improve nutrient holding capacity

- Increase Cation Exchange capacity
- Provides nutrients in organic or slow release form

- Reduce use of fertilizer
- Improve nutrient availability
- Decrease loss of nutrients due to leaching
- Improve plant growth and survival

Environmental benefits associated with sustainable landscape practices

- “Wastes” are recycled
- Carbon is returned to soil
- Metals such as lead are made less available
- Organic contaminants are degraded by microbial activity

- Reduction in greenhouse gas emissions
- Contaminated soils are made safer

Reduce water use for irrigation

Improve water infiltration into soil surface

Reduce erosion

Reduce use of fertilizer

Improve nutrient availability

Decrease loss of nutrients due to leaching

Improve plant growth and survival

Reduction in greenhouse gas emissions

Contaminated soils are made safer
Compost

Product characteristics depend upon:

- Feedstocks: Biosolids vs. Food Wastes vs. Manures
- Bulking Agents: Wood chips vs. Sawdust vs. Leaves and Yard Wastes
- Type of processing: Screened vs. Unscreened
- Age: Active vs. Cured

What About Biosolids?

- Regulated by US EPA (Part 503) and by State Agencies
- Regulations require:
 - Industrial pretreatment programs
 - Testing for metals (As, Cd, Cr, Cu, Pb, Hg, Mo, Ni, Se, Zn)
 - Testing for organic contaminants such as PCB's
 - Process for Pathogen Reduction (Time/Temperature)
 - Vector Attraction Reduction (Time/Temperature)
 - Testing for pathogens (Fecal Coliform/Salmonella)
 - Labeling
 - Reporting

Compost Quality

Not all composts are the same

- Moisture content
- Texture and particle size
- Organic matter content
- pH, soluble salts, and nutrients
Compost Properties

- Organic Matter: Undecomposed residuals, active and dead microbes (Biomass) and the products of decomposition (Humic matter)

- Nutrients: macro (NPK) and micro nutrients (e.g. Ca, Cu, Bo, Fe, Mn, Mg, Ni, S, Zn)

- Ash and grit

Raising Soil Organic Matter

<table>
<thead>
<tr>
<th>Percentage to Raise OM by 1% by weight</th>
<th>Compost Inclusion Rate needed by volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>15%</td>
</tr>
<tr>
<td>3%</td>
<td>22%</td>
</tr>
<tr>
<td>4%</td>
<td>27%</td>
</tr>
<tr>
<td>5%</td>
<td>32%</td>
</tr>
<tr>
<td>6%</td>
<td>37%</td>
</tr>
</tbody>
</table>

All rates based on addition of AGRESOIL COMPOST to typical soil weighing 2600 lbs/cu. yd.

Compost Test Parameters

- pH
- Soluble Salts (Electrical Conductivity)
- Nutrients
- Forms of Nitrogen: Organic N, Nitrate - N, and Ammonium -N
- Particle Size
- Pathogens (fecal coliform and Salmonella)
- Metals/Contaminants
Compost Stability/Maturity
(When is compost done?)

- C:N ratio measures changes in ratio of high Carbon residues which are lost and Nitrogen which is conserved during the process; Low C:N ratio (less than 15) indicates finished compost that will not result in N immobilization.
- Microbial Respiration: Measurement of CO2 under controlled conditions indicates presence of OM.
- Self Heating: High temperatures suggests that microbes are still active.
- Plant Growth Tests; measure effect of compost on germination and vigor

Compost is Alive

- Microbial populations continue to grow and decompose organic matter
- Activity declines with time but does not stop
- Thermophilic microbes will be replaced by mesophilic microbes when compost cools and when compost is added to soil
- Mesophilic microbes that colonize compost can be antagonistic to plant pathogens
- Addition of compost to soil stimulates the activity of the existing microbes in the soil

What about the “bugs”?

- Composts contain diverse communities of different microorganisms
- Quality of the organic matter and environmental conditions in the soil will determine which microbes grow and survive
- There is little evidence that the differences in microbial populations among composts will result in better plant growth
- The benefits of using compost to improve soil, physical and biochemical, are significant enough to justify using compost
Compost Uses

Examples of product use:
- Establishing lawns and turf
- Root zone mix for sports fields
- Top dressing lawns and sports fields
- Planting beds
- Tree and shrub planting mix
- Root zone mix for constructing golf greens
- Potting media component
- Soil amendment for vegetable production
- Wetland construction and remediation
- Infiltration basins for storm water management

Choosing the “Right” Compost

- Finer texture for topdressing (<1/2 inch acceptable; <3/8 inch preferable)
- Coarser texture for mulch (<1 inch)
- pH, soluble salts: highly dependent on plant choice and application rates
- Aged for potting mixes
- Avoid compost with high silt/clay for sports field mixes
- Low nitrogen and phosphorus near water resources

General Guidance

- “A soil analysis should be completed by a reputable laboratory to determine any nutritional requirements, pH, and organic matter adjustments that may be necessary. Once these are determined, the soil can be appropriately amended to a range suitable for the particular plants being established.”
- “The nutrients contained in compost should be considered when applying fertilization. They will typically offset nutrient requirements, thereby reducing application rates.”

USCC www.compostingcouncil.org
Compost Testing

• Must be representative sample
• Results will depend on lab methods

UMass Soil and Plant Tissue Testing Laboratory, Amherst, MA
USCC Seal of Testing Approval (STA) Laboratories

Nutrients in Compost

• Compost is a source of both Macro (NPK) and Micronutrients
• Nutrients are primarily in an organic form; e.g. proteins, carbohydrates and fats of living and dead microorganisms and plant material.
• Over-use of compost can supply excessive nutrients and result in build-up of nutrients in soils (e.g. P).

Nutrient Availability

• Nutrients are released over time as organic matter decays in the soil
• Nutrients may also be taken up by microbial growth stimulated by addition of organic matter (e.g. N immobilization)
• Organic matter can also make nutrients e.g. metals less available, less soluble and thus less likely to be lost from the soil.
• Stimulation of plant growth can also reduce losses by reducing loss of soil particles during rain.
What About Phosphorus?

- Compost used on established turf must be used in compliance with state regulations regarding Phosphorus fertilizers.
- Soil must be tested to show need for P.
- In some states composts and organic products are exempted from rules that apply to fertilizers.
- Composts and organic products can be used when making repairs or seeding.

Only a small portion of the P in compost is water extractable

<table>
<thead>
<tr>
<th>P2O5 lbs/cy</th>
<th>Total</th>
<th>Water Extractable</th>
<th>% Water Extractable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosolids</td>
<td>3.0 to 13.9</td>
<td>0.2 to 1.3</td>
<td>2.0 to 22 %</td>
</tr>
<tr>
<td>Leaf & Yard Waste</td>
<td>1.4 to 3.0</td>
<td>0.1 to 0.2</td>
<td>6.8 to 8.4 %</td>
</tr>
<tr>
<td>Gelatin residuals</td>
<td>10</td>
<td>0.2</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Lawns and Turf
Sports Field Construction

Optimizing Organic Content in Soil Specifications

• 3% to 10% often specified
 – 3% unnecessarily low for lawn areas
 – 10% too high for lawns
• 5% to 8% for lawns, reduces risk, and saves water
• 3% to 5% for sports fields
 – Balance organic content with infiltration rate

All Composts are Not the Same
Comparison of Different Composts on Infiltration Rate
All Mixes: 80% Sand: 20% Compost

<table>
<thead>
<tr>
<th>Silt</th>
<th>Clay</th>
<th>Total</th>
<th>Infiltration Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost A</td>
<td>3.33 %</td>
<td>1.96 %</td>
<td>4.39 %</td>
</tr>
<tr>
<td>Compost B</td>
<td>6.07 %</td>
<td>0.69 %</td>
<td>6.76 %</td>
</tr>
<tr>
<td>Compost C</td>
<td>5.43 %</td>
<td>2.03 %</td>
<td>7.46 %</td>
</tr>
</tbody>
</table>
Topdressing

University Research Programs
“DETERMINING THE IMPORTANCE OF LEAF COMPOST TOPDRESSING WHEN MANAGING ATHLETIC FIELDS ORGANICALLY” Brian J. Tencza and Jason J. Henderson Department of Plant Science and Landscape Architecture University of Connecticut Preliminary results of multi-year study show positive results on turf color, plant cover, and soil properties from annual topdressing with compost

Tree and Shrub Planting
Will adding compost to the back-fill soil improve survival and growth?

Popular press gives contradictory advice

Research studies under controlled conditions and field trials can show variable results depending on soil conditions, type of plant, planting conditions and care, but overall indicate significant benefits.

Case Study; CT DOT

“Field Trial – Compost Used with Planting Soil, Project 159-177, I-91/Route 3 Interchange, Wethersfield, CT”, Report No. 116(42)-2-99-3, January, 1999, Connecticut Department of Transportation

“An inventory was conducted in May, 1998... it was noted that none of the plants planted with compost needed replacement (i.e. the mortality rate was zero percent), compared to a mortality rate of approximately 40% in the standard ConnDOT control plants. Another inspection conducted in September, 1998 confirmed that the survival rate for the compost amended plants was still 100.”

Planting Beds
Compost Mulch

Compost vs. Ground Wood

- Lower C:N ratio of Compost
- Higher Soil Nutrient Availability
- Increased Plant Growth

see Lloyd et al., Biocycle 2002

Wetlands

Manufactured Wetland Soil

- High Organic Matter Content
 - 20% organic content, (=12 % org. carbon)
 - US Army Corp of Engineers

Due to relatively high rates of compost require comports with low nutrient levels.
Green Roof Functions

• Reduce “heat island” effects
• Capture and filter rainwater and reduce flow to storm water systems

Soil Media Must:

• Support plant growth
• Allow for rapid infiltration of water
• Hold water but meet maximum bulk density when saturated

Infiltration Basins and Rain Gardens
Infiltration Basin

Infiltration Basins and Rain Gardens

- Designed to treat storm water
- Rapid water infiltration
- Ability to filter and absorb nutrients

Soils Must:

- Provide for rapid infiltration
- Have adequate Organic Matter to support plant growth and absorb nutrients

Conclusions

- Composts can be used in a variety of applications to improve soils
- Not all composts are the same
- The selection and the use of compost should be based on the specific properties of the compost and the needs of the end user